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Abstract

The Karhunen–Loève series expansion (KLE) decomposes a stochastic process into an infinite series of pairwise uncorrelated
andom variables and pairwise L2-orthogonal functions. For any given truncation order of the infinite series the basis is

optimal in the sense that the total mean squared error is minimized. The orthogonal basis functions are determined as the
solution of an eigenvalue problem corresponding to the homogeneous Fredholm integral equation of the second kind, which
is computationally challenging for several reasons. Firstly, a Galerkin discretization requires numerical integration over a 2d
dimensional domain, where d , in this work, denotes the spatial dimension. Secondly, the main system matrix of the discretized
weak-form is dense. Consequently, the computational complexity of classical finite element formation and assembly procedures
as well as the memory requirements of direct solution techniques become quickly computationally intractable with increasing
polynomial degree, number of elements and degrees of freedom. The objective of this work is to significantly reduce several
of the computational bottlenecks associated with numerical solution of the KLE. We present a matrix-free solution strategy,
which is embarrassingly parallel and scales favorably with problem size and polynomial degree. Our approach is based on (1)
an interpolation based quadrature that minimizes the required number of quadrature points; (2) an inexpensive reformulation
of the generalized eigenvalue problem into a standard eigenvalue problem; and (3) a matrix-free and parallel matrix–vector
product for iterative eigenvalue solvers. Two higher-order three-dimensional C0-conforming multipatch benchmarks illustrate
exceptional computational performance combined with high accuracy and robustness.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Most physical systems exhibit randomness, which, because of its lack of pattern or regularity, cannot be explicitly
aptured by deterministic mathematical models. The randomness may be due to the nature of the phenomenon itself,
alled aleatoric uncertainty, or due to a lack of knowledge about the system, referred to as epistemic uncertainty.
n the latter the uncertainty may be reduced by obtaining additional data about the system at hand. An example
f an epistemic uncertainty encountered in engineering is the fluctuation of material properties throughout a body,
hich occur due to the inhomogeneity of the medium. Deterministic mechanical models typically feature empirically
erived material parameters, such as material stiffness and yield stress, that are assumed constant throughout the
ody. Their value is typically determined as a statistical volumetric average over a large set of laboratory specimens.
his idealized model of reality may be insufficient in e.g. structural risk or reliability analysis and prediction, which

s concerned with probabilities of violation of safety limits or performance measures, respectively [1]. In this case
he effects of uncertainty on the result of a computation need to be quantified.

Uncertainty in physical quantities that vary in space and or time may be adequately modeled by stochastic
processes or random fields [2]. This approach generalizes a deterministic system modeled by a partial differential
equation to a stochastic system modeled by a stochastic partial differential equation or SPDE. Reliable predictions
may be obtained by propagating uncertainties in input variables to those in the response. The main objective is to
compute the response statistics, such as the mean and variance in the random solution field, or the probability that
a set tolerance is exceeded. To compute these statistics it is necessary to discretize the SPDE, not only in space and
time, but also in the stochastic dimensions. This can be a complicated task, not because of modeling randomness,
but due to the curse of dimensionality. Every random variable contributes one dimension to the problem. Hence, it
is important to keep their total to a minimum.

1.1. Discrete representation of random fields by the truncated Karhunen–Loève series expansion

One of the relevant questions in stochastic analysis is how to represent random fields discretely, in a manner
suitable for use in numerical computation. The essential step is to break down the representation into a tractable
number of mutually independent random variables, whose combination preserves the stochastic variability of the
process [3,4]. One representation that is of particular interest is the truncated Karhunen–Loève series expansion
or KLE [5,6]. The KLE decomposes a stochastic process into an infinite series of pairwise uncorrelated random
variables and pairwise L2-orthogonal basis functions. Truncating the series expansion after M terms yields the best
M-term linear approximation of the random field, in the sense that the total mean squared error is minimized [7].

he KLE is useful in practice when satisfactory accuracy is attained with no more than 20–30 terms [3,8].
Computation of the truncated KLE requires the solution of a homogeneous Fredholm integral eigenvalue problem

IEVP) of the second kind. In general this is only possible numerically. The most popular numerical methods to solve
EVPs are the Nyström method, degenerate kernel methods and the collocation and Galerkin method [9,10]. The
alerkin method is widely regarded as superior due to its approximation properties and solid theoretical foundation.
pecifically, it can be shown that the eigenvalues converge monotonically towards the exact eigenvalues and, by
onstruction, that the modes preserve exactly the L2-orthogonality property of the analytical mode-shapes [3].

.2. Challenges in numerical solution of the KLE by means of the Galerkin method

Efficient solution of the KLE using the Galerkin method is a computationally challenging task [3]. The main
hallenges are the following:

(i) A Galerkin discretization requires numerical integration over a 2d dimensional domain, where d , in this
work, denotes the spatial dimension. The computational complexity of classical finite element formation and
assembly procedures scales as O

(
N 2

e (p + 1)3d
)
, where Ne is the global number of elements, p the polynomial

degree and d the spatial dimension.
(ii) The main system matrix of the discretized weak-form is dense and requires O

(
8N 2

)
bytes of memory in

double precision arithmetic, where N is the dimension of the trial space.
(iii) Numerical solution requires one sparse backsolve O

(
N 2

)
and one dense matrix–vector product O

(
N 2

)
in each

iteration of the eigenvalue solver, thus the solution time of the numerical eigenvalue solver scales O
(
N 2
· Niter

)
,

where N is the number of iterations required by the Lanczos solver.
iter
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Table 1
Minimum memory required for storage of the main system matrix in the solution of the homogeneous Fredholm
integral problem of the second kind assuming double-precision floating point arithmetic.

Number of degrees of freedom 103 104 105 106

Matrix storage 8 MB 800 MB 80 GB 8 TB

Table 1 illustrates that explicit storage of the dense system matrix requires impracticable amounts of memory for
problems involving more than 100K degrees of freedom. Hence, the computational complexity of classical finite
element formation and assembly procedures as well as memory requirements of direct solution techniques become
quickly computationally intractable with increasing polynomial degree, number of elements and degrees of freedom.

There has been a particular research effort devoted to alleviating the disadvantages of the Galerkin method.
In [11–13] an approximation by (Kronecker product) hierarchical matrices is used to efficiently compute the
dense matrices as well as to reduce the memory requirements. These matrices are sparse and allow for matrix
multiplication, addition and inversion in O (N log N ) time (or for Kronecker product hierarchical matrices in O (N )
ime) where N is the number of degrees of freedom. The generalized Fast Multipole Method, which also scales
ith O (N log N ), has been proposed in [14]. This method was shown to not yield significant speed-ups for p
nite element methods and thus it is recommended for kernels of low regularity. Wavelet Galerkin-schemes [15]
re also being used and can be coupled with compression techniques for boundary value problems [16], but
ave the disadvantage, that the number of eigenmodes to be computed must be known in advance. The pivoted
holesky decomposition [17] focuses on approximating the discretized random fields with sufficiently fast decaying
igenvalues. In this case a truncation of the pivoted Cholesky decomposition of the covariance operator allows for
n estimation of the eigenvalues in the post-processing step in O

(
M2 N

)
time, where M is the truncation order

f the Cholesky decomposition. One of the advantages of this method is the fact, that the number of eigenmodes
equired for a certain accuracy of the random field discretization can be estimated in advance.

.3. Splines as a basis for random fields

Splines are piecewise polynomials with increased smoothness across element boundaries compared to classical
nite elements. Traditionally, splines have been primarily used as shape functions in computer aided design. More
ecently, with the introduction of isogeometric analysis [18], splines have become more established as trial functions
n finite element analysis. Although isogeometric analysis was originally introduced to improve the interoperability
cross several stages of the design to analysis process, it has proven its fidelity as an analysis technology. We
efer to the monograph [19] and references contained therein for an exposition of isogeometric analysis applied to
eterministic problems in structural and fluid mechanics.

More recently, spline based isogeometric analysis has found its way into the stochastic community. Stochastic
ethods have been proposed to quantify uncertainty due to material randomness in linear elasticity [20,21],

tatic analysis of plates [22], vibrational analysis of shells [23], static and dynamic structural analysis of random
omposite structures [24] and functionally graded plates [25–27]. In [28] a method is proposed to quantify the
ffect due to uncertainty in shape. Of these, the methods proposed in [20,23,26,27] use isogeometric analysis
ithin a spectral stochastic finite element framework [7], which is based on a KLE of random fields. The methods

n [22,24,25] use perturbation series of which [22] expands random fields in terms of the KLE. Standard polynomial
haos is used in [28], while the methods in [21,29] and [30] discretize the stochastic dimensions in terms of
plines. In particular, in [29] tensor product B-splines are used to expand stochastic variables, [21] proposes a
pline-dimensional decomposition (SDD) and [30] proposes a spline chaos expansion, thus extending generalized
olynomial chaos [31].

To the best of our knowledge, [32] is the first work in which splines have been used to approximate the
runcated KLE. In his work the author applies a degenerate kernel approximation based on tensor product spline
nterpolation at the Greville abscissa. More recently, in the spirit of isogeometric analysis, non-uniform rational
-splines (NURBS) have been used to approximate the KLE using the Galerkin method [33] and the collocation
ethod [34]. These methods avoid the geometrical errors in the representation of CAD geometry typically made

ithin the classical finite element method. The authors note that the use of splines in the geometry description as

3
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Fig. 1. Normalized discrete eigenvalues corresponding to a univariate Fredholm integral eigenvalue problem with an exponential kernel
correlation length is one). Comparison of eigenvalues obtained by C1 quadratic splines to C0 quadratic piecewise polynomials. Both

methods employ a standard Galerkin projection based on full Gauss quadrature. The reference solution used to normalize the results is
computed by the approach described in Remark 6.2.

well as in discretization of the spatial and stochastic dimensions could enable a “seamless uncertainty quantification
pipeline”.

In the context of the present work we would like to highlight the superior spectral approximation properties of
smooth splines as compared to classical C0 finite element shape functions. Several studies [35–38] have investigated
he spectral approximation properties of splines in eigenvalue problems corresponding to second and fourth order
ifferential operators and have demonstrated that splines have improved robustness and accuracy per degree of
reedom across virtually the entire range of modes. The numerical results for the Fredholm integral eigenvalue
roblem are no different, as corroborated by the results shown in Fig. 1. It is precisely these properties that make
plines appealing in the representation of random fields by means of the Karhunen–Loève expansion.

1.4. Contributions

We present a matrix-free isogeometric Galerkin method for Karhunen–Loève approximation of random fields by
plines. Our solution methodology resolves several of the aforementioned computational bottlenecks associated with
umerical solution of integral eigenvalue problems and enables solution of large-scale three-dimensional IEVPs on
omplex C0-conforming multipatch domains. Below we summarize our main contributions.

onversion to a standard eigenvalue problem
We have chosen a specific trial space of rational spline functions whose Gramian matrix has a Kronecker product

tructure independent of the geometric mapping. This enables us to perform the backsolve, used to convert the IEVP
o standard form, in O

(
N · N 1/d

)
time by utilizing standard linear algebra techniques from [39,40].

nterpolation based quadrature
We present an interpolation based quadrature technique designed and optimized specifically for the variational

ormulation of the Fredholm integral equation. The approach integrates a rich target space of functions with minimal
umber of quadrature points and outperforms existing competitive techniques in isogeometric analysis, such as
uadrature by interpolation and table look-up [41,42] and weighted quadrature [43–45]. The proposed interpolation

ased quadrature technique is inspired by a similar technique used within linear finite elements in [46, Chapter 3.1.3]

4
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and [13]. Instead, our approximation of the covariance function is based on higher order tensor product spline
interpolation and resembles the kernel approximation made in [32]. Besides requiring as few quadrature points
as possible, the interpolation based quadrature technique exposes Kronecker structure in the integral equations,
reducing computational complexity significantly.

Matrix-free solution methodology
We present a matrix-free solution methodology to avoid explicit storage of the dense system matrix associated

ith numerical computation of the KLE. The matrix-free solution methodology not only reduces the memory
omplexity from O(N 2) to O(N ), but also significantly reduces the solution time. This is achieved by integrating

the matrix-free solver with the proposed interpolation based quadrature technique. The latter exposes Kronecker
structure in the resulting discrete integral equation, thereby reducing formation costs to O

(
N · N 1/d

)
per iteration,

leaving only the dense matrix–vector product that is associated with the Lanczos algorithm that remains O(N 2) per
iteration. The integrative approach to quadrature and matrix-free solution techniques, exploiting Kronecker structure,
is inspired by the matrix-free weighted quadrature method proposed recently in [45].

Open source implementation
We provide an open-source Python implementation of the described techniques that is available for download at

https://github.com/m1ka05/tensiga. All benchmarks have been obtained using this implementation.

1.5. Outline

In Section 2 we briefly review the necessary mathematical and algorithmic background with regard to Kronecker
products, B-splines and NURBS. In Section 3 we present the Karhunen–Loève series expansion of random fields and
the weak formulation of the corresponding Fredholm integral eigenvalue problem of the second kind. In Section 4
we introduce our methodology for numerical solution of the truncated KLE. This includes reformulation of the
eigenvalue problem to standard form, interpolation based quadrature of the weak form of the Fredholm integral
problem, and a matrix-free algorithm with low computational complexity and minimal memory requirements that
is embarrassingly parallelizable. The computational complexity is described in more detail in Section 5, where
we compare our method with usual formation and assembly techniques used for standard Galerkin methods from
the literature. Finally, in Section 6, we present a one-dimensional numerical study and several three-dimensional
high-order numerical examples. A conclusion and an outlook with recommendations for future work are given in
Section 7.

2. Background and notation

This section introduces some of the machinery that is used throughout the paper. The presented solution
methodology for the Fredholm integral equation relies heavily on the properties of Kronecker products in
combination with multidimensional tensor contraction [39]. We briefly review the main properties used in this work
and illustrate their use in the Kronecker matrix–vector product. The Kronecker structure of the involved matrices
is a direct consequence of the chosen tensor product spline function spaces. We briefly introduce B-splines as a
basis for polynomial splines and Non-Uniform Rational B-splines (NURBS) for smooth geometrical mappings. For
additional details we refer the reader to standard reference books [19,47].

2.1. Evaluation of the computational cost of an algorithm

The computational cost of the algorithms discussed in this work are evaluated in terms of floating point operations
per second (flops). A single flop represents the amount of work required to preform one floating point addition,
subtraction, multiplication or division [39]. Although the number of flops does not provide a complete assessment of
the efficiency of an algorithm, it is widely used in the literature. Indeed, many other considerations such as cache-
line efficiency and number of memory allocations can have a large impact on the performance of an algorithm.
Typically, we are interested in the leading terms that dominate the computational cost of an algorithm and record
the performance in terms of an order-of-magnitude estimate of the number of flops, written in Big-Oh notation

as O(·).
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2.2. Kronecker products and tensor contraction

Let A ∈ Rm×n, B ∈ Rp×q and C ∈ Rs×t denote real valued matrices. The Kronecker product A⊗ B ∈ Rm·p×n·q

is a matrix defined as

A⊗ B :=

⎡⎢⎣ A11B · · · A1nB
...

...

Am1B · · · AmnB

⎤⎥⎦ (1)

Kronecker products satisfy the following properties

(A⊗ B)⊗ C = A⊗
(
B⊗ C

)
(associativity) (2a)

(A⊗ B)
(
C⊗ D

)
=

(
AC

)
⊗ (BD) (mixed product property) (2b)

(A⊗ B)−1
= A−1

⊗ B−1 (inverse of a Kronecker product) (2c)

(A⊗ B)⊤ = A⊤ ⊗ B⊤ (transpose of a Kronecker product) (2d)

Let X ∈ Rn1×···×nd , Y ∈ Rm1×···×md denote two d-dimensional arrays. Vectorization of X is a linear operation
that maps X to a vector vec(X) ∈ Rn1·...·nd with entries

vec(X)i := X i1...id , where i = i1 + (i2 − 1)n1 + (i3 − 1)n1 · n2 + · · · + (id − 1)n1 · . . . · nd−1. (3)

One recurring theme in this paper involving Kronecker matrices is efficient matrix–vector multiplication. Let
Dk ∈ Rmk×nk denote a set of d matrices {Dik jk , k = 1, . . . , d}, ik = 1, . . . ,mk and jk = 1, . . . , nk . The
matrix–vector product

vec (Y) =
(
Dd ⊗ · · · ⊗ D1

)
vec (X) O(M · N ) flops (4a)

can be written as a tensor contraction instead

Yi1···id =
∑
j1··· jd

Di1 j1 · · · Did jd X j1··· jd O(max (N · m1, nd · M)) flops (4b)

Here N = n1 · . . . · nd and M = m1 · . . . · md . The second approach scales nearly linearly with matrix size and
significantly outperforms standard matrix–vector multiplication which scales quadratically with the matrix size. In
practice, highly optimized linear tensor algebra libraries can be used to perform the tensor contraction such as
the tensor algebra compiler (TACO) [48]. Our Python implementation uses Numpy’s reshaping and matrix–matrix
product routines, which call low-level BLAS routines. The implemented reshapes do not require any expensive and
unnecessary data copies.

2.3. B-splines

Consider a d-dimensional parametric domain D̂ = [0, 1]d
⊂ Rd with local coordinates x̂ = (x̂1, . . . , x̂d ). Let

( Bik ,pk (x̂k), ik = 1, . . . , nk ) denote the univariate B-spline basis of polynomial degree pk and dimension nk ,
corresponding to the kth parametric coordinate x̂k . We consider multivariate B-splines as tensor products of
univariate B-splines

Bi(x̂) =
d∏

k=1

Bik ,pk (x̂k), i := (i1, . . . , id ). (5)

Here i ∈ I is a multi-index in the set I := {(i1, . . . , id ) : 1 ≤ ik ≤ nk}. The collection of all multivariate B-spline
basis functions spans the space

Bh := span
{

Bi(x̂)
}

i∈I . (6)

It is important to note that splines allow for increased continuity between polynomial elements as compared to
classical C0-continuous finite element basis functions. This turns out to have significant impact on the spectral
accuracy of the Galerkin method. This is evidenced by several studies [35–38] and will be discussed in some detail

in this work.
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2.4. Geometrical mapping

Let F : D̂ → D map a point x̂ from the parametric domain D̂ to a point x in the physical domain D. We
ssume that the map F and its inverse are smooth such that the Jacobian matrix

[
DF(x̂)

]
i j :=

∂Fi
∂ x̂ j

and its inverse are

well-defined. In this work F is represented as a linear combination of Non-Uniform Rational B-splines (NURBS).
NURBS are rational functions of B-splines that enable representation of common engineering shapes with conic
sections, which cannot be represented by polynomial B-splines [47]. The discretization method presented in this
work makes heavy use of tensor product properties of the involved function spaces. Since NURBS do not have a
tensor product structure, we use them only to represent the geometry and do not consider them as a basis for the
function spaces.

3. Isogeometric Galerkin discretization of the Karhunen–Loève series expansion

The Karhunen–Loève series expansion (KLE) decomposes a stochastic process or field into an infinite linear
combination of L2-orthogonal functions and uncorrelated stochastic random variables. In this section we present
the probability theory underlying the KLE and discuss its discretization by means of the Galerkin method.

3.1. Karhunen–Loève expansion of random fields

Consider a complete probability space (Θ,Σ ,P). Here Θ denotes a sample set of random events, Σ is the σ -
algebra of Borel subsets of Θ and P is a probability measure P : Σ → [0, 1]. A random field α(·, θ) : Θ ↦→ L2(D)
on a bounded domain D ∈ Rd is a collection of deterministic functions of x ∈ D, called realizations, that are indexed
by events θ ∈ Θ . A subset of realizations α(·,Θs), Θs ∈ Σ , has a probability of occurrence of P(Θs).

Let E [·] denote the expectation operator corresponding to the probability measure P. Assuming α ∈ L2(D×Θ)
its first and second order moments exist and are given by

µ(x) := E [α(x, θ)] and (7a)

Γ (x, x ′) := E
[
(α(x, θ)− µ(x))(α(x ′, θ)− µ(x ′))

]
. (7b)

Here µ is called the mean or expected value of α over all possible realizations, and Γ : D × D → R is called
ts covariance function or kernel. By definition, the kernel is bounded, symmetric and positive semi-definite [7].
ecause the kernel is square integrable, that is, Γ ∈ L2(D ×D), it is in fact a Hilbert–Schmidt kernel, see [49].

A random field is stationary or homogeneous if its statistical properties do not vary as a function of the position
x ∈ D. This implies that the covariance function can be written as a function of the difference x − x ′. Furthermore,
or isotropic random fields the statistical properties are invariant under rotations, which means the covariance is a
unction of Euclidean distance ∥x − x ′∥2.

emark 3.1. Although, the Euclidean distance is widely used in the literature its use is not always justified. In
eneral, the geodesic distance, i.e. the shortest distance between points x and x ′ along all paths contained in D, is
he true measure of distance. The Euclidean distance can vary significantly from the geodesic distance especially if
he correlation length is relatively large and the domain is non-convex. The geodesic distance is, however, difficult
nd expensive to compute, which explains its non-use. In this work we also use the Euclidean distance measure
nd assume its choice is a reasonable one in the context of the applied numerical benchmark problems.

Fig. 2 shows two common examples of covariance functions that correspond to stationary isotropic random fields:
he exponential and the Gaussian or squared exponential kernel. Important parameters that influence the locality
f these correlation functions are the variance σ 2 and correlation length bL . Here L denotes a characteristic length
nd b is a dimensionless factor.

The KLE of a random field α(·, θ) requires the solution of an integral eigenvalue problem. Consider the linear
perator

T : L2(D) ↦→ L2(D), (Tφ) (x) :=
∫

Γ (x, x ′)φ(x ′) dx ′. (8)

D

7



M.L. Mika, T.J.R. Hughes, D. Schillinger et al. Computer Methods in Applied Mechanics and Engineering 379 (2021) 113730

t

T
S
s
F

T
(
λ

Fig. 2. The exponential and squared exponential (Gaussian) covariance functions for different correlation lengths with b = {0.1, 1.0}. Note
he difference in the continuity of both kernels at x = x ′. The exponential kernel is C0, while the square exponential kernel is C∞ at

x = x ′.

he operator T is compact. In fact, T is a Hilbert–Schmidt operator, since the covariance function is a Hilbert–
chmidt kernel. Furthermore, since the covariance function is positive semi-definite and symmetric [7], T is a
elf-adjoint positive semi-definite linear operator. The eigenfunctions {φi }i∈N of T are defined by the homogeneous
redholm integral eigenvalue problem of the second kind,

Tφi = λiφi , φi ∈ L2(D) for i ∈ N. (9)

he important properties of the eigenpairs are (1) the normalized eigenfunctions {φi }i∈N are orthonormal, that is,
φi , φ j )L2(D) = δi j , and thus form a basis for L2(D); and (2) the corresponding eigenvalues form a sequence
1 ≥ λ2 ≥ · · · ≥ 0, which in general decays with increasing mode number.

Because Γ in (7b) is symmetric and positive semi-definite, it possesses the spectral decomposition [50,51]

Γ (x, x ′) =
∞∑

i=1

λiφi (x)φi (x ′). (10)

With these definitions, the KLE of a random field α ∈ L2(D ×Θ) is defined by the following series [5]

α(x, θ) = µ(x)+
∞∑

i=1

√
λiφi (x)ξi (θ ), where ξi (θ ) :=

1
√
λi

∫
D
(α(x, θ)− µ(x)) φi (x) dx . (11)

While {φi }i∈N are pairwise L2-orthogonal on D, the {ξi }i∈N are pairwise uncorrelated zero-mean random vari-
ables [7]. For this reason the KL expansion is sometimes said to be bi-orthogonal.

3.2. Truncated Karhunen–Loève expansion

In order to represent a random field in a discrete numerical computation it is necessary to discretize the continuous
probability space. This can be achieved by truncating the KLE after M terms and thus reducing the dimension of
the stochastic space to M uncorrelated random variables

α̃M (x, θ) = µ(x)+
M∑ √

λiφi (x)ξi (θ ). (12)

i=1

8
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The mean of a random field is not affected by the discretization. The variance of the discretization on the other
hand can be derived from the spectral decomposition in Eq. (10)

E
[
(α̃M (x, θ)− µ(x))2]

=

M∑
i=1

λiφ
2
i (x). (13)

The variance of the discretized random field converges uniformly in D and in L2(Θ,Σ ,P) towards the true
variance [33]

lim
M→∞

M∑
i=1

λiφ
2
i (x) = Γ (x, x). (14)

urthermore, it can be shown that the KLE is optimal with respect to the global mean-squared error among all
eries expansions of truncation order M [7].

.3. Variational formulation

The variational formulation or weak form of the integral eigenvalue problem introduced in Eq. (9) states
Find {λ, φ} ∈ R+0 × L2(D) such that∫

D

(∫
D′

Γ (x, x ′)φ(x ′) dx ′ − λφ(x)
)
ψ(x) dx = 0 ∀ψ ∈ L2(D). (15)

onfining the solution to the finite-dimensional subspace Sh ⊂ L2(D) we obtain the discrete variational formulation
Find {λ, φ} ∈ R+0 × Sh such that∫

D

(∫
D′

Γ (x, x ′)φh(x ′) dx ′ − λhφh(x)
)
ψh(x) dx = 0 ∀ψh ∈ Sh . (16)

his is the Galerkin method for the homogeneous Fredholm integral eigenvalue problem of the second kind [33,52].
ithin the trial space under consideration, the Galerkin method produces the best L2 approximation of the analytical
odes. The resulting discrete modes preserve exactly the L2 orthogonality property of the analytical mode-shapes.
urthermore, it can be shown that a variational treatment using the Galerkin method leads to eigenvalues that
onverge monotonically, under mesh refinement, towards the true eigenvalues [7].

.4. Choice of the trial space

The choice of the trial space Sh provides some freedom in the design of the Galerkin method. The recently
roposed isogeometric Galerkin method for the KLE of random fields uses NURBS for the test and trial spaces [33].
his choice is motivated by the fact that the geometrical mapping is defined using NURBS and it is natural to

emain within the isoparametric paradigm. This method shares the same technical challenges as all classical Galerkin
ethods applied to this class of problems [11,33]: the formation and assembly costs, which have a time complexity

f O
(
N 2

e · p3d
)
, as well as the storage requirements, which have space complexity of O

(
N 2

)
, become quickly

ntractable with increasing number of elements Ne, polynomial degree p, dimension d and number of degrees of
reedom N . A practical Galerkin method must address these difficulties in the design of the method.

We abandon the isoparametric concept and choose a different space to represent the finite-dimensional solution.
ur choice offers multiple computational advantages without sacrificing higher-order accuracy and robustness. We
efine the trial space for the Galerkin method as

Sh := span

{
Bi(x̂)√

det DF(x̂)

}
i∈I

. (17)

ecause the geometrical mapping F is smooth and invertible the Jacobian determinant is never singular, that is,
et DF(x̂) > 0 for all x̂ ∈ D̂. Importantly, the functions are linearly independent due to linear independence of
9
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B-splines. In general, however, these basis functions will not form a partition of unity. Instead, the characterizing
property is that products of these functions are integral preserving, that is, they transform as volume forms∫

D

Bi(x̂)√
det DF(x̂)

Bj(x̂)√
det DF(x̂)

dx =
∫
D

Bi(x̂)Bj(x̂)
det DF(x̂)

dx =
∫
D̂

Bi(x̂)Bj(x̂) dx̂ .

3.5. Matrix formulation

After substituting the desired subspace for the test and trial functions and performing minor algebraic manipu-
lations, the discretized Galerkin method results in a generalized algebraic eigenvalue problem

Avh = λhZvh, (18)

here the system matrices are formed by evaluating

Aij =

∫
D̂

∫
D̂′

Γ (x(x̂), x(x̂ ′))
Bi(x̂)√

det DF(x̂)

Bj(x̂ ′)√
det DF(x̂ ′)

det DF(x̂) det DF(x̂ ′) dx̂ ′dx̂

=

∫
D̂

∫
D̂′

Γ (x(x̂), x(x̂ ′))Bi(x̂)Bj(x̂ ′)
√

det DF(x̂)det DF(x̂ ′) dx̂ ′dx ′ (19)

nd

Zij =

∫
D̂

Bi(x̂)√
det DF(x̂)

Bj(x̂)√
det DF(x̂)

det DF(x̂) dx̂

=

∫
D̂

Bi(x̂)Bj(x̂) dx̂ . (20)

s a result of the chosen solution space, the mass matrix Z has a Kronecker structure and can be decomposed into
= 1, . . . , d univariate mass matrices

Zk := Z ik jk =

∫ 1

0
Bik ,pk (x̂k)B jk ,pk (x̂k) dx̂k, ik, jk = 1, . . . , nk . (21)

he system mass matrix Z can be then written as

Z = Zd ⊗ · · · ⊗ Z1. (22)

nstead of computing and storing the matrix Z, we precompute and store the matrices Zk, k = 1, . . . , d.
urthermore, it is the Kronecker structure that allows us to inexpensively reformulate the generalized eigenvalue
roblem to a standard algebraic eigenvalue problem.

emark 3.2. In practice Zk in (21) is computed exactly up to machine precision using Gauss–Legendre numerical
uadrature with p + 1 quadrature points per element, where p is the polynomial degree in component direction
. For alternative ways of computing integrals of piecewise polynomial products see [53]. Because the domain of
ntegration is one-dimensional the formation and assembly costs of O(ne p3) as well as the storage costs of O(pn)
ytes are negligible compared to the total solver costs. Here ne is the number of univariate elements and n is the
nivariate number of degrees of freedom in component direction k.

.6. Discretization of multipatch geometries

Single patch domains can only represent simple geometric models. In general multipatch domains need to be
onsidered. Because the integral operator in (8) does not involve derivatives, it does not require any smoothness
rom the finite element spaces. Hence, the techniques presented in this paper are valid for multi-patch domains.
he examples in this paper involve C0-conforming multi-patch domains. Alternatively, non-conforming C−1

iscretizations are also possible with minor change.
10
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4. Efficient matrix-free solution strategy

There are two major challenges when applying the Galerkin method to discretize the homogeneous Fredholm
ntegral eigenvalue problem in (9). Firstly, the variational formulation requires integration over a 2d-dimensional

domain to evaluate the matrix entries in A. This leads to formation and assembly costs with complexity O(N 2
e (p+

)3d ), where Ne is the global number of elements, p the polynomial degree and d the spatial dimension. Secondly,
ecause the matrix is dense, A requires insurmountable memory storage for any practical problem of interest. Several
echniques have been presented in the literature in order to deal with these challenges, for example by approximation
ith low-rank matrices like the hierarchical matrices [11–13] or by using Fast Multipole Methods [14]. In this work
e present a combination of four techniques to deal with the aforementioned challenges:

1. Reformulation of the generalized eigenvalue problem into an equivalent standard eigenvalue problem;
2. Interpolation based quadrature for variational formulations of integral equations;
3. Efficient formation of finite element arrays based on Kronecker matrix–vector product;
4. Formulation of a matrix-free and parallel matrix–vector product for the Lanczos algorithm.

The reformulation into a standard algebraic eigenvalue problem significantly reduces the computational cost and
imultaneously improves conditioning. By exploiting the Kronecker structure of the right-hand-side mass matrix
e can perform this reformulation with negligible overhead. The proposed non-standard quadrature technique that
e call interpolation based integration is tailored for variational formulations of integral equations. The technique

s optimal in the sense that few quadrature points are required while integrating a rich space of tensor product
unctions on the 2d-dimensional domain D×D. Importantly, the technique lends itself to multidimensional tensor
ontraction due to the Kronecker structure of the involved matrices. This significantly speeds up the evaluation
f integrals over high-dimensional domains and scales favorably with polynomial degree. Finally, all techniques
re combined within a matrix-free evaluation scheme that is embarrassingly parallel and requires minimal memory
torage. The formation and assembly costs of our approach are negligible compared to the remaining solver costs of
he Lanczos eigenvalue solver, which is O(Ñ 2

·Niter/Nthread). Here Ñ is the global number of degrees of freedom of
he interpolation space, Niter is the number of iterations of the eigensolver and Nthread is the number of simultaneous
rocesses. In the following we discuss each of the proposed techniques in more detail.

.1. Reformulation into a standard algebraic eigenvalue problem

Let us consider a Cholesky factorization of the mass matrix Z = LL⊤ and define a linear transformation of the
igenvectors v′h := L⊤vh . The generalized eigenvalue problem can then be rewritten (see [40, Chapter 9.2.2]) as a
tandard eigenvalue problem with unchanged eigenvalues corresponding to new eigenvectors v′h

A′v′h = λhv′h, where A′ := L−1AL−⊤. (23)

t is expected that the new system matrix A′ has improved conditioning compared to A. The kernel is positive-definite
nd symmetric. In practice, it often quickly tends to zero for increasing distance ∥x − x ′∥2. In the limiting case,
here Γ (x, x ′)→ δ(x, x ′), the system matrix A→ Z and hence the preconditioner would be ideal.
Although improved conditioning is beneficial, the main reason for the chosen transformation is efficiency.

olution of a standard algebraic eigenvalue problem is much less expensive than solution of a generalized eigenvalue
roblem. The transformation itself is inexpensive. Using the Kronecker structure of Z and the properties (2b) and
2d) we may write

Z = Zd ⊗ · · · ⊗ Z1

= LdLd
⊤
⊗ · · · ⊗ L1L1

⊤

= (Ld ⊗ · · · ⊗ L1) (Ld ⊗ · · · ⊗ L1)
⊤
= LL⊤. (24)

ere LkL⊤k , k = 1, . . . , d, denote the Cholesky factorizations corresponding to the univariate mass matrices Zk .
ence, instead of performing the Cholesky factorization for the complete system matrix Z ∈ RN×N , which is the

tandard procedure in most solvers for generalized algebraic eigenvalue problems, we merely need the Cholesky
nk×nk
actorizations for Zk ∈ R , k = 1, . . . , d.

11
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The factorization is precomputed once before using it in the eigenvalue solver. The associated computational
ost is reduced from O

(
N 3

)
to O

(
n3

)
flops, where n = max(n1, . . . , nd ) and N = n1 · ... · nd . Subsequently, the

ost of applying the factorization in a single iteration of the eigenvalue solver is reduced from O
(
N 2

)
to O (n · N ).

esides a reduction in computational cost, this approach significantly reduces the required memory storage.

.2. Interpolation based quadrature for integral equations

One of the most straightforward ways of improving efficiency is to design quadrature rules that require fewer
valuation points. This is especially true for the variational formulation of the Fredholm integral equation which
equires numerical integration over a 2d-dimensional domain. In practice, accurate and efficient quadrature rules
re designed as follows. First, one chooses a space of functions T, called the target space for numerical quadrature,
hose elements should be exactly integrated by the new quadrature rule. If this space is in some sense rich enough

hen the error due to the quadrature can be bounded by the discretization error, which is needed to show optimal
ates of convergence of the numerical method, see [54]. The next objective is to find a quadrature rule that requires
s few points as possible to integrate all functions in T.

We present a non-standard quadrature technique that generalizes the approach to quadrature presented for linear
nite elements in [13,46] to higher order splines. Our approach is tailored towards evaluating integrals found in
ariational formulations of integral equations and achieves a very low number of evaluation points while integrating
xactly a rich space of functions. The target space T is chosen such that the quadrature scheme exactly evaluates
he integral∫

D̂

∫
D̂′

G̃(x̂, x̂ ′)Bi(x̂)Bj(x̂ ′) dx̂ ′dx̂, G̃ ∈ B̃h(D̂)⊗ B̃h(D̂′). (25)

sing Ñ 2 points. Here B̃h is another d-dimensional spline space that can be chosen independently of Bh and Ñ is
ts dimension. In practice this space can be chosen to fit well with the integrand in the variational formulation of
he integral equation. This provides additional flexibility to the quadrature scheme.

Because G̃ ∈ B̃h(D̂)⊗ B̃h(D̂′) is a real-valued 2d-variate spline function it can be expanded in terms of B-spline
asis functions and real-valued coefficients {G̃kl}k,l∈Ĩ as

G̃(x̂, x̂ ′) :=
∑
k,l∈Ĩ

G̃kl B̃k(x̂)B̃l(x̂ ′) with k, l ∈ Ĩ := {(i1, . . . , id ) : 1 ≤ ik ≤ ñk}.

omparing the multidimensional integrand in (19) with the one in (25) we may conclude that the degrees of freedom
G̃kl}k,l∈Ĩ should be chosen such that G̃ is a good approximation of the function G : D̂ × D̂ ↦→ R+ defined as

G(x̂, x̂ ′) := Γ̂ (x̂, x̂ ′)
√

det DF(x̂)det DF(x̂ ′). (26)

ere Γ̂ (x̂, x̂ ′) is the pull-back of the kernel Γ (x, x ′) from the physical to the parametric space using the geometrical
apping F .

emark 4.1. To maintain optimal accuracy in numerical quadrature, locally, the smoothness of the interpolation
pace should not exceed smoothness of the integrand in (26). Indeed, Fig. 3b shows that error convergence due
o quadrature of an exponential kernel, which features reduced regularity at x = x ′, is suboptimal. Similarly,
he reduced regularity due to the Jacobian determinant term needs to be taken into account when choosing the
nterpolation space. Being set in the framework of splines and isogeometric analysis, our method provides sufficient
exibility in enforcing required smoothness.

The approximation G̃ can be estimated in different ways. We follow a similar approach to the degenerate kernel
pproximation in [32] and choose to collocate G at the Greville abscissa [55]. This approach is both simple and
ombines high order accuracy with a minimal number of evaluation points. We note that related ideas based on
uasi-interpolation have been presented in [56–58] for formation and assembly of boundary integral equations and
n [41,42] for matrix assembly in Galerkin discretization of PDEs.

Let B̃ = B̃ij := B̃j(x̂i) denote the d-variate spline collocation matrix evaluated at the Greville abscissa
ˆ ˜
x̂i ∈ D, i ∈ I. The interpolation problem states

12
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Find {G̃kl}k,l∈Ĩ such that∑
k,l∈Ĩ

G̃kl B̃k(x̂i)B̃l(x̂ ′j ) = G(x̂i, x̂ ′j ) ∀ i, j ∈ Ĩ. (27)

his is equivalent to the matrix problem G = B̃G̃B̃⊤. Hence, the matrix of coefficients can be computed as
˜ = B̃−1GB̃−⊤. The computational cost of the interpolation can be significantly reduced from O(Ñ 3) to O(ñ · Ñ )
ops, where ñ = max (ñ1, . . . , ñd ), by exploiting the Kronecker structure of B̃. We decompose B̃ into d univariate
ollocation matrices B̃k , k = 1, . . . , d , and use property (2c) to write its inverse as

B̃−1
= B̃−1

d ⊗ · · · ⊗ B̃−1
1 with B̃k := B̃ik jk = B̃ jk , p̃k (x̂ik ). (28)

n practice we compute d LU factorizations, each corresponding to a univariate matrix B̃k , to apply the inverse of
˜ to a vector. Note, that this approach is similar to the approach we took in (24) for the Cholesky factorization
f Z.

.3. Matrix formation

By substituting G in (19) with G̃ we can approximate matrix A by a matrix Ã with entries

Ãij :=

∫
D̂

∫
D̂′

G̃(x̂, x̂ ′)Bi(x̂)Bj(x̂ ′) dx̂ ′dx̂

=

∑
k,l∈Ĩ

G̃kl

∫
D̂

∫
D̂′

B̃k(x̂)B̃l(x̂ ′)Bi(x̂)Bj(x̂ ′) dx̂ ′dx̂

=

∑
k,l∈Ĩ

G̃kl

∫
D̂

B̃k(x̂)Bi(x̂) dx̂
∫
D̂′

B̃l(x̂ ′)Bj(x̂ ′) dx̂ ′.

ence, using the tensor product structure of the interpolation space we have separated the 2d dimensional integral
nto a product of two d dimensional integrals. In matrix notation we may write Ã = M⊤G̃M, or

Ãij =
∑
k,l∈Ĩ

G̃kl Mki Mlj. (29)

ere M := Mij is a mass matrix

Mij =

∫
D̂

B̃i(x̂)Bj(x̂) dx̂ . (30)

imilarly, as we did for matrix Z in (22), we can exploit the Kronecker structure and decompose M into d univariate
ass matrices Mk := Mik jk

M = Md ⊗ · · · ⊗M1 with Mik jk =

∫ 1

0
B̃ik , p̃k (x̂k)B jk ,pk (x̂k) dx̂k . (31)

s in the case of Zk , k = 1, . . . , d , these univariate matrices are computed up to machine precision as discussed
n Remark 3.2. The approximation error A − Ã is entirely due to the interpolation error G − G̃. Hence, accurate
pproximation of G should result in an accurate approximation of A.

.4. Matrix-free solution strategy

The interpolation based quadrature technique introduced in the previous section involves computation of the
atrix of coefficients G̃ := G̃kl. This matrix is dense and has Ñ 2 entries. Consequently, storage of G̃ is just

s inconvenient as storing Ã and becomes quickly intractable with problem size. In this section we propose a
atrix-free evaluation of the matrix–vector product v′ ↦→ Ãv′ that does not require explicit access to matrix G̃
˜
r A.

13
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4.4.1. Basic setup
We have the following standard algebraic eigenvalue problem

Ã′v′ = λhv′. (32a)

Here, the system matrix Ã′ can be written as

Ã′ = L−1M⊤B̃−1JΓJB̃−⊤ML−⊤, (32b)

where J is a diagonal matrix with diagonal entries given by the square roots of Jacobian determinants evaluated at
the Greville abscissa, and B, M and L are all Kronecker product matrices. Consequently, a matrix–vector product
with any of these matrices can be performed close to linear time complexity. The matrix–vector product v′ ↦→ Ã′v′

an be subdivided into the following operations

Γ := Γ̂ (x̂k, x̂ ′l ) (Evaluation of the kernel at the Greville abscissa) (32c)

G = JΓJ (Scaling of the kernel) (32d)

G̃ = B̃−1GB̃−⊤ (Interpolation of the scaled kernel) (32e)

Ã = M⊤G̃M (Evaluation of the integrals) (32f)

Ã′ = L−1ÃL−⊤ (Application of the preconditioner) (32g)

n the following subsection we present a matrix-free matrix–vector product that incorporates each of the above
teps. Except for the diagonal matrix J, none of the above matrices are stored explicitly. Only the corresponding
nivariate matrices are stored and used in the Kronecker products, while the entries of Γ are computed on the
y.

.4.2. Matrix-free algorithm
Let Γ̂k1...kd l1...ld := Γ̂ (x̂1,k1 , . . . , x̂d,kd , x̂ ′1,l1 , . . . , x̂ ′d,ld ) ∈ Rñ1×···×ñd×ñ1×···×ñd denote the function values of the

ernel evaluated at the tensor product grid of the Greville abscissa in D̂× D̂. The proposed evaluation order of the
atrix-free matrix–vector product is summarized in Algorithm 1.

Algorithm 1 Matrix-free evaluation of the matrix–vector product v′ ↦→ Ã′v′

Input: vi1...id ∈ Rn1×···×nd , Jl1...ld ∈ Rñ1×···×ñd , B̃ik jk ∈ Rñk×ñk and Mlk jk ∈ Rñk×nk

utput: v′i1...id ∈ Rn1×···×nd

1: V j1... jd ← L−1
i1 j1
· · · L−1

id jd
vi1...id ▷ Preconditioning from right

2: Xk1...kd ← Mk1 j1 · · ·Mkd jd V j1... jd

3: Yl1...ld ← B̃−1
k1l1
· · · B̃−1

kd ld
Xk1...kd ▷ Use LU-factorization of B̃k, k = 1, ..., d

4: Y ′l1...ld ← Jl1...ld ⊙ Yl1...ld

5: Z ′k1...kd
← Γ̂k1...kd l1...ld Y ′l1...ld ▷ Evaluate in parallel without forming Γ

6: Zk1...kd ← Jk1...kd ⊙ Z ′k1...kd

7: Y j1... jd ← B̃−1
j1k1
· · · B̃−1

jd kd
Zk1...kd ▷ Use LU-factorization of B̃k, k = 1, ..., d

8: Vl1...ld ← M j1l1 · · ·M jd ld Y j1... jd
9: v′i1...id ← L−1

i1l1
· · · L−1

id ld
Vl1...ld ▷ Preconditioning from left

The matrix-free matrix–vector product v′ ↦→ Ã′v′ is evaluated in nine separate stages. Stage one applies back-
substitution of the upper triangular matrix L⊤ and exploits its Kronecker structure. Stage two applies a matrix–vector
product with matrix M and again exploits its Kronecker structure. Stage three applies back-substitution using the
factorization of the interpolation matrix B̃. Again, Kronecker structure is essential to reduce both the space and
time complexity of the back-substitution. In stage four the coefficient vector is element-wise multiplied by the
square root of the Jacobian determinant evaluated at the Greville abscissa. Here, element-wise multiplication is
denoted by the ⊙ symbol. Stage five dominates the computational cost of Algorithm 1. This stage represents a
dense matrix–vector product. To perform this step without explicitly forming matrix Γ we compute its entries on
14
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the fly, one row at a time. We compute products of the coefficient vector with several rows of Γ in parallel. Stages
six to nine are equivalent to stages four to one, due to the symmetry of the operator.

Due to the iterative solution process, the matrix–vector product needs to be evaluated at each iteration. The
number of iterations is dependent on the number of required eigenmodes, the conditioning of the algebraic
eigenvalue problem and the efficiency of the eigensolver. In this work we use the standard implicitly restarted
Lanczos method [39].

5. Computational complexity analysis

The goal of a time-complexity analysis is to obtain an estimate of the computational cost that scales linearly
with time. This cost is expressed in terms of certain parameters that depend on the problem size, the dimension
and the polynomial degree. For this purpose, let us introduce the following notation:

n Number of degrees of freedom of the trial space in one component direction;
ñ Number of degrees of freedom of the interpolation space in one component direction;
N := nd Total number of degrees of freedom of the trial space;
Ñ := ñd Total number of degrees of freedom of the interpolation space;
Ne Total number of spatial elements in the trial space;
Nq Number of quadrature points in a standard quadrature loop.
Niter Number of iterations of the matrix-free algorithm;
Nthread Number of simultaneous shared memory processes in the matrix–vector product.

5.1. Standard finite element procedures

In the following we present the computational complexity of standard finite element procedures for higher-order
finite elements. We use the tensor product structure of the high-dimensional space D̂× D̂ to minimize the involved
computations. The general setting for this analysis is (1) D̂× D̂ has N 2

e elements; and (2) we assume a quadrature
ule Q( f ) :=

∑Nq
k=1wk f (xk), with 1 ≤ Nq ≤ (p + 1)d , to integrate the products on every d-dimensional element

□d in D̂.
The leading term in formation and assembly is determined by the cost of forming the element matrices. Consider

he following element matrix

Ae
ij =

∫
□d

Bi(x̂)
∫
□d

Γ (x̂, x̂ ′)Bj(x̂ ′) dx̂ ′dx̂

≈

Nq∑
k=1

wk Bi(x̂k)
Nq∑
l=1

wlΓ (x̂k, x̂ ′l )Bj(x̂ ′l )

=

Nq∑
k=1

Cik Dkj with Dkj =

Nq∑
l=1

wlΓ (x̂k, x̂l)Bj(x̂l)

ith i, j ∈ I. We see that Ae
ij can be formed by the matrix product of matrices C ∈ R(p+1)d

×Nq and D ∈ RNq×(p+1)d
.

his matrix product costs O
(
Nq (p + 1)2d

)
. The formation of Cik is negligible. The formation of Dkj on the other

hand is O
(
N 2

q (p + 1)d
)
. Since Nq ≤ (p+1)d the leading term is Nq (p+1)2d . Hence, the total cost of forming one

lement matrix is O
(
Nq (p + 1)2d

)
. In total we have to integrate over all N 2

e multidimensional elements of D̂× D̂.
ith that, the total cost of forming A is O

(
N 2

e Nq (p + 1)2d
)
. Using a Gauss–Legendre quadrature rule with (p+1)

uadrature points in every coordinate direction gives in total Nq = (p + 1)d quadrature points, and we can expect
leading cost proportional to O

(
N 2

e (p + 1)3d
)
.

.2. Finite element procedures employing sum factorization

Estimates presented in the previous subsection hold for classical hp finite element procedures employing a

tandard quadrature loop. Next we discuss the complexity of finite element procedures that employ sum factorization
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e

instead of a standard quadrature loop. Sum factorization significantly speeds up the element array formation by
exploiting the tensorial structure of both the finite element basis and the used quadrature rules [59–63]. It is worth
noting that, due to the structure of the integral operator, the sum factorization technique looks somewhat different
than is standard in the hp finite element method.

The setting for this analysis is (1) D̂ × D̂ has N 2
e rectangular elements; (2) we use a tensor product basis of

polynomial degree p on every element; and (3) we use a tensor product of univariate Gauss–Legendre quadrature
rules Q( f ) :=

∑p+1
k=1 ωk f (xk) to integrate the products on every d-dimensional element □d in D̂. Consider the

lement matrix

Ae
ij =

∫
□d

Bi(x)
∫
□d

Γ (x, x ′)Bj(x ′) dx ′dx

≈

p+1∑
k1=1

Bi1,p(x1,k1 )
p+1∑

k2=1

Bi2,p(x2,k2 ) · · ·
p+1∑

kd=1

Bid ,p(xd,kd )

p+1∑
l1=1

B j1,p(x ′1,l1 )
p+1∑
l2=1

B j2,p(x ′2,l2 ) · · ·
p+1∑
ld=1

Γ (x1,k1 , . . . , xd,kd , x ′1,l1 , . . . , x ′d,ld )B jd ,p(x ′d,ld )

with i, j ∈ I. Sum factorization is essentially tensor contraction. The kernel evaluated at the grid of quadrature points
is a tensor Γk1...kd l1...ld ∈ R(p+1)×···×(p+1) and is contracted with matrices B jz ,p(x ′z,lz ) ∈ R(p+1)×(p+1), for z = 1, . . . , d ,
and subsequently with matrices Biz ,p(xz,kz ) ∈ R(p+1)×(p+1) for z = 1, . . . , d. The cost of every contraction is
O

(
(p + 1)2d+1

)
flops. In total there are 2d such tensor contractions. Hence, the element matrix formation cost for

Ae is O
(
2d(p + 1)2d+1

)
flops. With N 2

e elements, the leading cost of forming A is O
(
2d N 2

e (p + 1)2d+1
)

flops.

5.3. Proposed strategy using interpolation based quadrature

In order to analyze the computational complexity of the proposed solution strategy we must address each stage
of the matrix-free matrix–vector product introduced in Algorithm 1. Let us consider the complexity in one iteration
of the matrix-free algorithm.

Stage 1 Has a cost O
(
dnd+1

)
.

Stage 2 Has a cost depending on the chosen projection space,
For n > ñ the cost is O

(
dpnd

)
,

For n = ñ the cost is O
(
dpnd

)
,

For n < ñ the cost is O
(
dpñd

)
.

Stage 3 Has a cost O
(
dñd+1

)
.

Stage 4 Has a cost O
(
ñd

)
.

Stage 5 Has a cost O
(

Ñ 2/Nthread

)
.

The remaining steps 6, 7, 8 and 9 are equivalent to steps 4, 3, 2 and 1. In step 2 we assume sparse matrix algebra. In
dense algebra, p can be replaced by n. In steps 1 and 3 we assume that the Cholesky and LU factorizations of the
univariate matrices of size n × n and ñ × ñ, respectively, have been precomputed and are available. Subsequently,
the solver costs are O

(
n2

)
and O

(
ñ2

)
flops, respectively, for each application of the factorization. The cost of a

single iteration is typically dominated by step 5, which does not depend on the polynomial degree p. Fortunately,
this step is embarrassingly parallel. Hence, the time complexity of the matrix free algorithm is O

(
Ñ 2 Niter/Nthread

)
flops.

5.4. Storage comparison

Both matrix-free and non-matrix-free methods need to store the resulting eigenmodes. Storage of the results takes
roughly L · 8N bytes, where L is the number of eigenmodes that need to be computed. Additionally, the standard

N×N
approach that stores the dense left-hand-side system matrix A ∈ R requires storage of N × N floating point
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Table 2
The leading terms in storage costs of a method that explicitly stores the main system matrix. Here L refers to
the number of eigenmodes that need to be stored. The storage cost is dominated by storage of the system matrix.

Number of degrees of freedom 103 104 105 106

Results storage L · 8 kB L · 80 kB L · 800 kB L · 8 MB
Matrix storage 8 MB 800 MB 80 GB 8 TB

Table 3
The leading terms in storage costs of a matrix-free approach. Here L refers to the number of eigenmodes that need to be stored. The storage
cost of the matrix-free method is typically dominated by the storage of the results.

Number of degrees of freedom 103 104 105 106

Results storage L · 8 kB L · 80 kB L · 800 kB L · 8 MB
Matrix-free approach 2 · 8 kB 2 · 80 kB 2 · 800 kB 2 · 8 MB

numbers. Using double precision floating point arithmetic the storage requirements are 8N 2 bytes. The additional
storage of the matrix-free approach scales linearly with problem size, with an asymptotic leading term of roughly
2·8N bytes, again using double precision floating point arithmetic. If step 4 of the matrix-free algorithm is performed
using shared memory parallelism then one can expect this to increase to (1 + Nthread) · 8N where Nthread is the

umber of simultaneous processes. Consequently, the storage cost of the matrix-free approach is typically governed
y storage of the results and is thus optimal. Tables 2 and 3 summarize the leading terms in storage of the two
lternatives.

. Numerical results

In this section we present numerical results that illustrate the accuracy, robustness and computational efficiency
f the proposed matrix-free isogeometric Galerkin method. A spectral study of the accuracy is performed in the
ase of one dimension. This study case gives insight into the accuracy attained by interpolation based quadrature
f the covariance function and its effect on approximating the eigenvalue spectra. Next, several three-dimensional
0-conforming multipatch benchmarks illustrate the computational performance attained for a range of polynomial

egrees and different refinement strategies of the interpolation as well as the solutions space. In the first two three-
imensional examples, the error in the discrete linear operator introduced by the interpolation based quadrature
s showcased in the 2- and the Frobenius-matrix-norm. In the last two three-dimensional examples we study the
ffect of solution space refinement. All computations in the benchmark cases are performed entirely in a single
rocess, without taking advantage of parallel execution, neither in the kernel evaluation itself nor in the linear
lgebra packages behind the implementation. The machine used in these study cases is a laptop equipped with
ntel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and 2 × 16 GB of non-ECC DDR4 2666MHz RAM. We further
rovide a plot showcasing the scalability of the method for one of the examples. The Python implementation in this
ork relies heavily on the packages Numpy [64] and Scipy [65] for the linear algebra and solver functionalities. In
rder to achieve high performance, crucial parts of the code base are just-in-time compiled using the LLVM-based
ython-compiler Numba [66,67].

.1. One-dimensional case study

Consider a one-dimensional random field defined on the domain D = [0, 1] ⊂ R. We investigate

(i) the relative L2(D) interpolation error of the kernel, G − G̃, with respect to uniform h-refinement enforcing
C p−1 continuity across element boundaries. We consider the cases where G is the Gaussian and exponential
kernel with b = 0.1, a characteristic domain length L = 1 and a variance σ 2

= 1.
(ii) the normalized spectra corresponding to an exponential kernel with b = 1.

Remark 6.1. Normalized spectra corresponding to a Gaussian kernel cannot be reliably computed across the full
range of eigenvalues because the smallest eigenvalues quickly approach zero up to machine precision.
17



M.L. Mika, T.J.R. Hughes, D. Schillinger et al. Computer Methods in Applied Mechanics and Engineering 379 (2021) 113730
Fig. 3. Normalized L2 interpolation error in the one-dimensional study case for multiple polynomial degrees. The error is given with respect
to the mesh size of the interpolation space (bottom axis), as well as the mesh size of the interpolation space normalized by the correlation
length (top axis). The convergence rates are approximately O(h̃ p+1) in (a) and O(h̃3/2) in (b).

Kernel approximation

Fig. 3a shows the convergence towards the Gaussian kernel for polynomial degrees 1 through 8. It seems that the

even degrees p = {2, 4, 6, 8} perform relatively better than the preceding odd degrees p = {1, 3, 5, 7}. It is evident

that higher-order interpolation of a smooth kernel leads to a higher-order convergence rate in the approximation. The

smooth interpolation space is not as suitable for approximation of kernels that have low regularity. Approximation

of the exponential kernel in Fig. 3b, which is C0 along x = x ′, shows that higher-order continuity of the basis

does not lead to an increased convergence rate. This behavior is in agreement with convergence estimates for spline
approximation of arbitrary smoothness [68].
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Fig. 4. Ratio of the approximated eigenvalues to the reference eigenvalues over a full spectrum of 501 eigenmodes in the one-dimensional
study case with an exponential kernel and a correlation length equal to the domain length.

Spectral approximation
Although the proposed method, in its current form, is best suited for smooth kernels like the Gaussian kernel,

xcellent approximation of the eigenvalues corresponding to non-smooth kernels is still possible. Fig. 4 depicts the
ull spectrum corresponding to the exponential kernel with b = 1. The proposed Galerkin method using interpolation
ased quadrature (IBQ) is compared to the isogeometric Galerkin method proposed in [33] and a classical C0 finite
lement solution in the case of polynomial degree p = 2. The interpolation space is set to h̃ = 0.005 · bL .
he proposed method (IBQ) exhibits the same advantageous characteristics as the standard isogeometric Galerkin
ethod [33] and exhibits no branching phenomena as in the case of the C0-continuous finite element approximation.
ue to their increased continuity across element boundaries, splines achieve a higher accuracy per degree of freedom

nd an increased robustness as compared with classical C0 finite element methods. These results are in agreement
ith several other studies that have investigated spectral approximations corresponding to eigenvalue problems in

tructural mechanics [35–38].

emark 6.2. The reference solution is computed using a standard isogeometric Galerkin method [33] with fifty
housand degrees of freedom. The first twenty eigenvalues have been validated up to machine accuracy by the
nalytical approach described in [7, Ch. 2.3.3, page 28-35]. The analytical computation of these eigenvalues involves
olving for roots of a complex equation and is for that reason avoided beyond the first twenty eigenvalues.

.2. Random field with exponential kernel in a three-dimensional half-open cylindrical domain

In the first three-dimensional example we investigate a random field defined in a half-open cylindrical domain as
hown in Fig. 5. We consider Gaussian and exponential kernels with a correlation length bL equal to the half of the
haracteristic length L . The variance of the random field is σ 2

= 1. We note that the example with an exponential
ernel is also studied in [33].

xample 1-1
In this example we consider the exponential kernel and since this kernel is C0 along x = x ′, there is no use in

nforcing higher smoothness on the element boundaries of the interpolation space. Moreover, the coarse geometry
0
s modeled by two patches with C continuity between both patches, therefore, the Jacobian determinants will
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Fig. 5. Half-open cylindrical geometry in the first three-dimensional benchmark. The geometry is modeled using polynomial degrees
p = {2, 1, 1} and knot vectors Ξ1 = (0, 0, 0, 0.5, 0.5, 1, 1, 1), Ξ2 = (0, 0, 1, 1), Ξ3 = (0, 0, 1, 1). This case is also studied in [33].

Fig. 6. Meshes of the half-open cylindrical geometry illustrating the interpolation and solution spaces in gray and orange, respectively.
The gray meshes from left to right correspond to cases one through three in Tables 4 and 6, which employ the first orange mesh in the
corresponding solution space. Except for the first interpolation mesh, all meshes are nearly uniform in each parametric direction (1,2,3). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

be discontinuous at the interface. Recalling Remark 4.1, in order to attain optimal accuracy of our interpolation
based quadrature, we enforce a discontinuous interpolation space in the circumferential direction at that interface.
Under given considerations, the chosen interpolation space employs quadratic B-splines and is C0 on most element

oundaries, except at the discontinuity, where it is C−1 in the circumferential direction. Since the system equations
re not affected by the discontinuity, see (22) and (29), we choose the continuity of this space analogously to
he example presented in [33] and use quadratic B-splines in each direction with C1 continuity on the element
oundaries. The solution space and the interpolation space meshes for each case are shown in Fig. 6. The first twenty
argest eigenvalues together with information about the mesh and computational cost are tabulated in Table 4. The
rst nine eigenfunctions corresponding to the nine largest eigenvalues are visualized in Fig. 7 by weighting each
igenfunction by the square root of the corresponding eigenvalue.

The presolution formation and assembly time includes the formation and assembly of the univariate mass
atrices, the interpolation matrices and their factorizations as well as the computation of the Jacobian determinants

t the Greville abscissa. The results in Table 4 indicate that these setup costs are negligibly small compared to
he total solution time of the Lanczos eigenvalue solver, which is dominated by the matrix-free evaluation of the

atrix–vector product (Step 5 in Algorithm 1). The number of iterations of the Lanczos algorithm is equal in each
ase. The maximum resident memory increases in each case, but is negligibly small, when compared to standard
ethods.
The two rightmost columns summarize the results obtained by the isogeometric Galerkin method proposed

n [33]. On the same mesh (Case 1) we observe a speed-up of roughly 2 orders in magnitude. This comparison

ight not be completely fair because a full Gaussian quadrature performed in [33] is much more accurate than our
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Fig. 7. First nine normalized eigenfunctions weighted by the square root of the corresponding eigenvalues in Example 1-1. Results from
the third benchmark case.

interpolation based quadrature technique on the same mesh. Nonetheless, the obtained accuracy in the eigenvalues
is convincing, as evidenced also in Table 5. Therein we compare the relative error of the approximated operator Ã
in (29) in terms of the 2- and Frobenius-norm with respect to the operator A in (19) obtained by standard Gaussian

uadrature with (p + 1)3 quadrature points. The suboptimal convergence rate for the rough exponential kernel
anifests again in the operator errors.

xample 1-2
The second example employs the Gaussian covariance kernel with the same correlation length and variance as

n Example 1-1. With that, we take advantage of higher smoothness across the element boundaries and rather than
erforming h-refinement as in Example 1-1, we set the interpolation mesh fixed (compare Case 1 in Example 1-1)
nd perform k-refinement for p = 2, 4, 8. Nonetheless, at the discontinuity in the coarse geometry model, we
nforce C−1 in the circumferential direction.

As already discussed, it is evident, that by taking advantage of higher convergence rates the proposed method
erforms better for smooth kernels, which reflects in the error of the operator in Table 7. It is worth noting, that
he timings versus accuracy are in favor of k-refinement.
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Table 4
Enumeration of twenty largest eigenvalues corresponding to the half-open cylinder problem with the exponential kernel in Example 1-1. The
numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing interpolation based quadrature for the
three different cases of solution and interpolation spaces depicted in Fig. 6 as well as the standard isogeometric Galerkin reference solutions
computed with two different meshes and polynomial order p = (2, 2, 2). Computations executed on a single core.

Mode Eigenvalue

Case 1 Case 2 Case 3 Galerkin 1a Galerkin 2a

1 162.9468999 162.8100625 162.8071703 162.7991539 162.7965791
2 91.57710310 91.44102567 91.43808750 91.43063070 91.42804062
3 57.68111166 57.57587807 57.57369989 57.56702901 57.56447741
4 51.23142243 51.09932034 51.09664525 51.09017918 51.08762278
5 38.91593553 38.80608047 38.80371507 38.79740931 38.79483423
6 28.04104735 27.91172258 27.90928395 27.90386143 27.90128438
7 25.17627947 25.06401793 25.06174037 25.05611145 25.05356161
8 19.44500190 19.37694239 19.37398575 19.36893419 19.36659412
9 16.28927839 16.16360095 16.16148139 16.15700369 16.15443088
10 15.91731898 15.80248489 15.80018997 15.79530798 15.79273209
11 15.22927329 15.15403705 15.15115655 15.14622914 15.14385016
12 11.30279820 11.22038002 11.21784016 11.21328690 11.21090778
13 10.30082590 10.18526145 10.18310045 10.17896939 10.17639037
14 9.821983940 9.698825760 9.697115542 9.693564320 9.690982310
15 8.151359815 8.061279562 8.058884448 8.054783080 8.052352020
16 7.618618090 7.582986789 7.580140848 7.578085990 7.576621410
17 6.835745032 6.727654352 6.725577132 6.722378350 6.719925970
18 6.501550722 6.450711848 6.447892827 6.445576690 6.443915210
19 6.300773813 6.181552964 6.180140556 6.177345410 6.174771170
20 5.866056812 5.769454716 5.767330624 5.763786920 5.761319370

Interpolation space

Number of elements 256 840 1596 – –
Number of degrees of freedom 1980 8990 16770 – –
Mesh size 2.857 1.719 1.423 – –
Mesh size/correlation length 0.571 0.344 0.284 – –
Formation and assembly of univariate matrices 0.314 s 0.308 s 0.301 s – –

Solution space

Number of elements . . . 256 . . . 3800
Number of degrees of freedom . . . 1050 . . . 6642
Mesh size . . . 2.857 . . . 1.073
Mesh size/correlation length . . . 0.571 . . . 0.215
Formation and assembly of system matrices – – – 4.86 min 17.3 h

ummary

Number of iterations 63 63 63 63 63
Maximum resident memory [GB] 0.438 0.441 0.441 0.464 1.566
Solution time 5.031 s 64.13 s 3.367 min 0.09 s 6.21 s
Total time 5.345 s 64.44 s 3.372 min 4.86 min 17.3 h

aExact kernel, NURBS trial and test space, elementwise assembly.

Table 5
Relative operator error with respect to the 2- and Frobenius-norm in Example 1-1 (exponential
kernel). For the comparison the exact operator A in (19) was estimated using a Gaussian quadrature
rule with (p + 1)3 points.

Rel. matrix norm Case 1 Case 2 Case 3

∥A− Ã∥2∥A∥−1
2 9.95 · 10−4 7.99 · 10−5 6.12 · 10−5

∥A− Ã∥F∥A∥−1
F 3.49 · 10−3 1.98 · 10−4 1.56 · 10−4
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Table 6
Enumeration of twenty largest eigenvalues corresponding to the half-open cylinder problem with the Gaussian kernel in Example 1-2. The
numerical eigenvalues have been computed by the proposed isogeometric Galerkin method for polynomial degrees p = 2, 4, 8 in each
parametric direction on the coarsest solution and interpolation meshes depicted in Fig. 6 as well as the standard isogeometric Galerkin
reference solutions computed with two different meshes and polynomial order p = (2, 2, 2). Computations executed on a single core.

Mode Eigenvalue

p = 2 p = 4 p = 8 Galerkin 1a Galerkin 2a

1 124.0032406 123.9913749 123.9916387 123.9916388 123.99141826
2 102.6956247 102.6855546 102.6857821 102.6857823 102.68558059
3 75.56585684 75.56078583 75.56096426 75.56096463 75.560806410
4 75.34465933 75.39112714 75.39245804 75.39245720 75.392381700
5 62.39810201 62.43643727 62.43754500 62.43754437 62.437470230
6 49.86332482 49.86567375 49.86580222 49.86580308 49.865713360
7 45.91399154 45.94362160 45.94444340 45.94444308 45.944382590
8 33.55923787 33.66041670 33.66423475 33.66423503 33.664535290
9 30.29707291 30.32008760 30.32063646 30.32063662 30.320605640
10 29.81774644 29.82724920 29.82734187 29.82734291 29.827325750
11 27.79271639 27.87644349 27.87960795 27.87960820 27.879851690
12 20.45053462 20.51277792 20.51510945 20.51510970 20.515286220
13 18.11733255 18.13601905 18.13635697 18.13635738 18.136361050
14 16.33318523 16.34652184 16.34660003 16.3466016 16.346634880
15 13.49460845 13.53722675 13.53876834 13.53876867 13.538889150
16 11.29075514 11.39146819 11.39829646 11.39830777 11.399235970
17 9.924081589 9.939261559 9.939463418 9.939464250 9.9394922100
18 9.350652024 9.434037081 9.439692866 9.439702240 9.4404691900
19 8.282851361 8.296245384 8.296321088 8.296322560 8.2963738600
20 8.069634638 8.097318365 8.098244763 8.098245110 8.0983270800

Interpolation space

Number of elements 256 256 256 – –
Number of degrees of freedom 1080 2400 6912 – –
Mesh size 2.857 2.857 2.857 – –
Mesh size/correlation length 0.571 0.571 0.571 – –
Formation and assembly of univariate matrices 0.299 s 0.299 s 0.301 s – –

Solution space

Number of elements . . . 256 . . . 3800
Number of degrees of freedom . . . 1050 . . . 6642
Mesh size . . . 2.857 . . . 1.073
Mesh size/correlation length . . . 0.571 . . . 0.215
Formation and assembly of system matrices – – – 5.01 min 16.97 h

ummary

Number of iterations 52 52 52 52 52
Maximum resident memory [GB] 0.437 0.436 0.437 0.464 1.615
Solution time 0.817 s 3.412 s 27.95 s 0.10 s 5.61 s
Total time 1.116 s 3.711 s 28.25 s 5.02 min 16.97 h

aExact kernel, NURBS trial and test space, elementwise assembly.

Table 7
Relative operator error with respect to the 2- and Frobenius-norm in Example 1-2 (Gaussian kernel).
For the comparison the exact operator A in (19) was estimated using a Gaussian quadrature rule
with (p + 1)3 points.

Rel. matrix norm Case 1 Case 2 Case 3

∥A− Ã∥2∥A∥−1
2 9.05 · 10−4 5.30 · 10−5 3.67 · 10−7

∥A− Ã∥F∥A∥−1
F 1.27 · 10−3 6.71 · 10−5 3.75 · 10−7
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Fig. 8. Hemispherical shell with a stiffener. The geometry is modeled as a single NURBS patch using polynomial degrees p = {2, 2, 2} and
knot vectors Ξ1 = (0, 0, 0, 1, 1, 2, 2, 3, 3, 3), Ξ2 = (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4), Ξ3 = (0, 0, 0, 1, 1, 1).

.3. Random field with Gaussian kernel in a three-dimensional hemispherical shell

We consider the hemispherical shell with stiffener depicted in Fig. 8. This three dimensional multipatch shell
tructure is similar to the model published in [69] but has a slightly different stiffener profile. We use the Gaussian
ovariance function with a correlation length bL = 0.5L , where the characteristic domain length, L ≈ 176, is the

diameter of the stiffener ring.
We study two examples across a range of polynomial degrees p = {2, 6, 16}. The two examples differ in the

following way: In both studies we use interpolation and solution meshes obtained by p-refinement of the geometrical
model, followed by uniform h-refinement. The continuity of these spaces is thus C0 at knots that are present in
the initial coarse geometrical model and C p−1 at new knots introduced by h-refinement. Again, where the solution
space is C0, we enforce C−1 in the interpolation space in order to achieve optimal accuracy per degree of freedom.

Example 2-1 The solution mesh is the same as the interpolation mesh;
Example 2-2 The solution mesh is twice as fine as the interpolation mesh in every component direction.

xample 2-1
Figs. 9a and 9b depict the interpolation and solution meshes, respectively, that are used in this benchmark

ase. As described in this benchmark case the solution and interpolation space are identical. The numerical results
re summarized in Table 8. As in the previous three-dimensional benchmarks the presolution setup costs hardly
ontribute to the total cost of the method. Again, the main computational cost lies in the matrix-free matrix–vector
roduct that is evaluated in each iteration of the Lanczos eigenvalue solver. Due to the increased number of degrees
f freedom for higher polynomial degrees the associated computational cost increases. Interestingly, the number of
terations is reduced in the case p = 16 as compared to the lower polynomial degrees.

xample 2-2
In the second benchmark the element size of the solution mesh is halved, see Fig. 9c. The interpolation mesh is
ept the same as in the first benchmark. The obtained results are presented in Fig. 10 and Table 9. By comparing
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Fig. 9. The solution space and interpolation space meshes and the cross-sections used in Example 2-1 and Example 2-2.

Table 9 and Table 8 it may be observed that the dimension of the solution space does not significantly affect the
total solver costs. Indeed, the number of degrees of freedom are more than doubled, yet the timings stay more or
less the same, independent of polynomial degree. The increased dimension of the solution space mesh is reflected
25
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Table 8
Enumeration of twenty largest eigenvalues corresponding to the hemispherical shell with stiffener problem with Gaussian kernel in Example
2-1. The numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing interpolation based quadrature
for the three different cases using solution and interpolation spaces depicted in Figs. 9a and 9b as well as standard isogeometric Galerkin
reference solution computed using mesh depicted in Fig. 9b and polynomial order p = (2, 2, 2). Computations executed on a single core.

Mode Eigenvalue

p = 2 p = 6 p = 16 Galerkin 1a

1 14 474.18249 14 475.59075 14 476.12924 14 476.26164
2 6530.062180 6531.224499 6531.666465 6531.775099
3 6530.062180 6531.224499 6531.666444 6531.775099
4 2091.112735 2091.638679 2091.836166 2091.884692
5 2091.111050 2091.638679 2091.836147 2091.884692
6 1971.193088 1971.617475 1971.784884 1971.826015
7 552.5819743 552.6961143 552.7418006 552.7530118
8 552.5819743 552.6961143 552.7417949 552.7530118
9 522.0061723 522.1758813 522.2364134 522.2512911
10 522.0061723 522.1758813 522.2364108 522.2512911
11 113.1117043 113.1328509 113.1414885 113.1435938
12 113.1116131 113.1328509 113.1414662 113.1435938
13 106.0162787 106.0601883 106.0743281 106.0778059
14 106.0161093 106.0601883 106.0743158 106.0778057
15 101.1533173 101.1674081 101.1733615 101.1748288
16 21.40721769 21.40924526 21.41014572 21.41036678
17 21.40721769 21.40924526 21.41014233 21.41036678
18 19.11433927 19.11772882 19.11904088 19.11936197
19 19.11433927 19.11772882 19.11903300 19.11936197
20 18.06993704 18.07977268 18.08244326 18.08309832

Interpolation space

Number of elements 3864 3864 3864 –
Number of degrees of freedom 10 672 35 424 189 144 –
Mesh size 7.992 7.992 7.992 –
Mesh size/correlation length 0.091 0.091 0.091 –
Formation and assembly of univariate matrices 0.354 s 0.427 s 3.530 s –

olution space

Number of elements 3864 3864 3864 3864
Number of degrees of freedom 9612 32 760 180 090 9612
Mesh size 7.992 7.992 7.992 7.992
Mesh size/correlation length 0.091 0.091 0.091 0.091
Formation and assembly of system matrices – – – 17.29 h

ummary

Number of iterations 52 52 41 52
Maximum resident memory [GB] 0.209 0.275 1.282 2.709
Solution time 70.28 s 12.33 min 5.00 h 13.16 s
Total time 70.63 s 12.33 min 5.00 h 17.29 h

aExact kernel, NURBS trial and test space, elementwise assembly.

in the maximum resident memory, which has increased as compared to the results in Table 8. As witnessed in the
previous benchmark, the higher order computations required fewer iterations than the lower order ones.

Remark 6.3. Note that the flexibility in mesh size of the interpolation versus the trial space mesh provides a
mechanism by which the error due to quadrature versus the error due to discretization can be effectively controlled.

Remark 6.4. A relevant question in random field discretization is what mesh size is necessary to attain acceptable
approximations. The mesh size should clearly depend on the correlation length bL . A rule of thumb, proposed
26
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Table 9
Enumeration of twenty largest eigenvalues corresponding to the hemispherical shell with stiffener problem with Gaussian kernel in Example
2-2. The numerical eigenvalues have been computed by the proposed isogeometric Galerkin method employing interpolation based quadrature
for the three different cases using solution and interpolation spaces depicted in Figs. 9a and 9b as well as standard isogeometric Galerkin
reference solution computed using mesh depicted in Fig. 9b and polynomial order p = (2, 2, 2). Computations executed on a single core.

Mode Eigenvalue

p = 2 p = 6 p = 16 Galerkin 1a

1 14 475.49870 14 475.83951 14 476.16143 14 476.26164
2 6531.142590 6531.428669 6531.692867 6531.775099
3 6531.142590 6531.428669 6531.692860 6531.775099
4 2091.595539 2091.729909 2091.847949 2091.884692
5 2091.593853 2091.729909 2091.847938 2091.884692
6 1971.603041 1971.694851 1971.794886 1971.826015
7 552.6940460 552.7172396 552.7445251 552.7530118
8 552.6940460 552.7172396 552.7445226 552.7530118
9 522.1541843 522.2038475 522.2400300 522.2512911
10 522.1541843 522.2038475 522.2400296 522.2512911
11 113.1329195 113.1368433 113.1419923 113.1435938
12 113.1328283 113.1368433 113.1419915 113.1435938
13 106.0508639 106.0667227 106.0751804 106.0778059
14 106.0506944 106.0667227 106.0751771 106.0778057
15 101.1680420 101.1701707 101.1737246 101.1748288
16 21.40946576 21.40966457 21.41020520 21.41036678
17 21.40946576 21.40966457 21.41020194 21.41036678
18 19.11757482 19.11833648 19.11912297 19.11936197
19 19.11757482 19.11833648 19.11911862 19.11936197
20 18.07646765 18.08100654 18.08261032 18.08309832

Interpolation space

Number of elements 3864 3864 3864 –
Number of degrees of freedom 10 672 35 424 189 144 –
Mesh size 7.992 7.992 7.992 –
Mesh size/correlation length 0.091 0.091 0.091 –
Formation and assembly of univariate matrices 0.367 s 1.229 s 23.21 s –

olution space

Number of elements 30 912 30 912 30 912 3864
Number of degrees of freedom 51 900 117 180 421 360 9612
Mesh size 4.019 4.019 4.019 7.992
Mesh size/correlation length 0.046 0.046 0.046 0.091
Formation and assembly of system matrices – – – 17.29 h

ummary

Number of iterations 52 52 41 52
Maximum resident memory [GB] 0.261 0.741 7.346 2.709
Solution time 70.05 s 12.433 min 4.850 h 13.16 s
Total time 70.42 s 12.433 min 4.858 h 17.29 h

aExact kernel, NURBS trial and test space, elementwise assembly.

in [70], is that the element size is approximately in the range from a half to a quarter of the given correlation
length. Similar rules have been established by other authors, see [8] and references therein. Especially, in a three-
dimensional problem this may lead to a large number of degrees of freedom. Engineering models of practical interest
are generally more complex than the models shown in this paper and may require millions of degrees of freedom.

Parallel execution
In order to provide comparable results in the benchmarks, all the computations have been performed in a

equential manner in a single process. The proposed method is well suited for parallel execution, as discussed in

ection 5.3. Fig. 11 shows nearly optimal scaling with the number of cores for Example 2-2 in the case of p = 6.
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Fig. 10. First nine normalized eigenfunctions weighted by the square root of the corresponding eigenvalues in Example 2-2.

Note, that only the kernel evaluation and matrix–vector product in Step 5 of Algorithm 1 have been performed
in parallel using shared-memory parallelism. All the other steps, as well as the Lanczos eigensolver are still run
sequentially. In this particular case 99.84% of the Algorithm 1 execution time was spent in the parallel execution
mode.

7. Conclusion

This paper presented an efficient matrix-free Galerkin method for the Karhunen–Loève series expansion (KLE)
of random fields. The KLE requires the solution of a generalized eigenvalue problem corresponding to the
homogeneous Fredholm integral eigenvalue problem of the second kind, and is computationally challenging for
several reasons. Firstly, the Galerkin method requires numerical integration over a 2d dimensional domain, where
d, in this work, denotes the spatial dimension. Consequently, classical formation and assembly procedures have a
time complexity that scales O

(
N 2

e · (p + 1)3d
)

with increasing polynomial degree p and number of elements Ne.
econdly, the main system matrix is dense and requires O

(
N 2

)
bytes of storage, where N is the global number

f degrees of freedom. This means that a discretization involving a hundred thousand degrees of freedom requires
t least 80 GB of RAM to store the main system matrix in double precision. Hence, the computational complexity
s well as memory requirements of standard solution techniques become quickly computationally intractable with
ncreasing polynomial degree, problem size and spatial dimension.
28
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Fig. 11. Scaling of the execution time in Example 2-2 in the case of p = 6 and 1, 2, 8 and 16 parallel processes. Timings normalized with
respect to the execution time in a single process.

We proposed an efficient solution methodology that significantly ameliorates the aforementioned computational
challenges. Our approach is based on the following key ingredients:

1. A trial space of rational spline functions, whose Gramian or mass matrix has a Kronecker structure
independent of the geometric mapping;

2. An inexpensive reformulation of the generalized algebraic eigenvalue problem into a standard algebraic
eigenvalue problem;

3. A degenerate kernel approximation of the covariance function using smooth tensor product splines;
4. Formulation of an efficient matrix-free and parallel matrix–vector product for iterative eigenvalue solvers,

which utilizes the Kronecker structure of the system matrices.

In Step 2 the reformulation to a standard eigenvalue problem significantly reduces the computational cost while
improving conditioning. This can be done efficiently due to the Kronecker structure of the mass matrix, which is a
result of the particular choice of the trial space, see Step 1. In Step 3 the degenerate kernel approximation enables us
to evaluate the resulting integrals exactly with a minimal number of evaluation points. Both steps involve matrices
that are endowed with a Kronecker structure and can be performed matrix-free in O

(
N · N 1/d

)
time. The leading

cost of the method is due to the Lanczos eigenvalue algorithm, which involves dense matrix–vector multiplications.
As noted in Step 4, we perform this step matrix-free, by computing the necessary components on the fly and in
parallel in approximately O

(
N 2 Niter/Nthread

)
time. Here Niter denotes the number of iterations of the eigensolver

nd Nthread is the number of simultaneous processes. Several three dimensional benchmark problems involving
on-trivial geometrical mappings have illustrated exceptional efficiency and effectiveness of the proposed solution
ethodology. In particular, we showed that the proposed methodology scales favorably with polynomial degree and
orks particularly well for smooth covariance functions, such as the Gaussian kernel. The Python implementation
sed to generate these results and the associated reference benchmarks has been provided as open-source software
nd is available for download at https://github.com/m1ka05/tensiga.

In a follow-up study we plan to extensively study the accuracy of the proposed solution methodology. There are
wo sources of error: (1) a quadrature error due to approximation of the covariance function; and (2) a discretization
rror due to the finite dimensional representation of the eigenmodes. We will perform a priori as well as a posteriori
rror analysis and formulate criteria for bounding the error due to quadrature by the discretization error. Within the

ame context of accuracy and robustness it is interesting to extend the spectral analysis results in [37] to generalized
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eigenvalue problems corresponding to Fredholm integral equations for different covariance functions as well as
polynomial order of the approximation.

We also plan to further improve the efficiency of the proposed method where possible. The proposed matrix-
ree algorithm lends itself for acceleration on graphics processing units (GPUs). Furthermore, exploiting particular
tructure (such as sparsity or symmetry) of the covariance function may lead to improved solver cost. For example,
he hierarchical matrix method proposed in [13] performs the matrix–vector products in O (N log N ) time, by

exploiting certain structure of the covariance function.
There are several other interesting avenues for future research. Some or all of the techniques proposed here could

be applied to linear as well as non-linear Fredholm integral differential equations of the first as well as the second
kind. While the proposed method is designed for smooth kernels it would be interesting to develop similar methods
that are tailored towards continuous kernels, such as the exponential kernel, or even singular kernels, which are
typical in boundary integral equations, see [56–58] for similar ideas making use of quasi-interpolation.

Finally, we would like to mention that similar techniques can be applied in the context of the collocation method.
The computational cost of such a method would be similar to that of the proposed Galerkin method .
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[57] A. Falini, C. Giannelli, T. Kanduč, M.L. Sampoli, A. Sestini, An adaptive IgA-BEM with hierarchical B-splines based on

quasi-interpolation quadrature schemes, Internat. J. Numer. Methods Engrg. 117 (10) (2019) 1038–1058.
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