Nguyen, T.H., Hiemstra, R.R., Stoter, S.K.F., Schillinger, D. (2022)``A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations.’’ Computer Methods in Applied Mechanics and Engineering, 392, p. 114671. |
Nguyen, T.H., Hiemstra, R.R., Schillinger, D., (2022). ``Leveraging spectral analysis to elucidate membrane locking and unlocking in isogeometric finite element formulations of the curved Euler–Bernoulli beam.’’ Computer Methods in Applied Mechanics and Engineering, 388, p.114240. [link] |
Hiemstra, R.R., Hughes, T.J.R, Reali, A., Schillinger, D. (2021)``Removal of spurious outlier frequencies and modes from isogeometric discretizations of second-and fourth-order problems in one, two, and three dimensions.’’ Computer Methods in Applied Mechanics and Engineering, 387, p. 114115. |
Mika, M.Ł., Hughes, T.J.R., Schillinger, D., Wriggers, P. and Hiemstra, R.R., (2021). ``A matrix-free isogeometric Galerkin method for Karhunen–Loève approximation of random fields using tensor product splines, tensor contraction and interpolation based quadrature.’’ Computer Methods in Applied Mechanics and Engineering, 379, p.113730. [link] |
Hiemstra, R.R., Shepherd, K.M., Johnson, M.J., Quan, L. and Hughes, T.J. (2020). Towards untrimmed NURBS: CAD embedded reparameterization of trimmed B-rep geometry using frame-field guided global parameterization. Computer Methods in Applied Mechanics and Engineering, 369, p.113227. [doi] [link] |
Hiemstra, R.R., Hughes, T.J.R., Manni, C., Speleers, H. and Toshniwal, D. (2020). A Tchebycheffian Extension of Multidegree B-Splines: Algorithmic Computation and Properties. SIAM Journal on Numerical Analysis, 58(2), pp.1138-1163. [doi] [link] |
Toshniwal, D., Speleers, H., Hiemstra, R.R., Manni, C. and Hughes, T.J. (2020). Multi-degree B-splines: Algorithmic computation and properties. Computer Aided Geometric Design, 76, p.101792. [doi] |
Hiemstra, R.R., Sangalli, G., Tani, M., Calabro, F., and Hughes, T.J.R. (2019). Fast Formation and Assembly of Finite Element Matrices with Application to Isogeometric Linear Elasticity. Computer Methods in Applied Mechanics and Engineering, Volume 355, Pages 234-260. [doi] |
Evans, J.A., Hiemstra, R.R., Hughes, T.J.R., and Reali, A. (2018). Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 338: 208-240. [doi] |
Marussig, B., Hiemstra, R.R., and Hughes, T.J.R. (2018). Improved conditioning of isogeometric analysis matrices for trimmed geometries. Computer Methods in Applied Mechanics and Engineering, 334: 79-110. [doi] |
Toshniwal, D., Speleers, H., Hiemstra, R.R., and Hughes, T.J.R. (2017). Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316: 1005-1061. [doi] |
Hiemstra, R.R., Calabro, F., Schillinger, D., and Hughes, T.J.R. (2017). Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316: 966-1004. [doi] |
Schillinger, D., Evans, J. A., Frischmann, F., Hiemstra, R.R., Hsu, M.C., and Hughes, T.J.R. (2015). A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. International Journal for Numerical Methods in Engineering, 102: 576-631. [doi] |
Hiemstra, R.R., Toshniwal, D., Huijsmans, R.H.M., and Gerritsma, M.I. (2014). High order geometric methods with exact conservation properties. Journal of Computational Physics, 257: 1444-1471. [doi] |
Palha, A., Rebelo, P.P., Hiemstra, R.R., Kreeft, J., and Gerritsma, M.I. (2014) Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics, 257: 1394-1422. [doi] |